On the Convergence of Numerical Schemes for the Boltzmann Equation
نویسندگان
چکیده
– We consider a time and spatial explicit discretisation scheme for the Boltzmannequation. We prove some Maxwellian bounds on the resulting approximated solution anddeduce its convergence using a new time-discrete averaging lemma. 2003 Éditions scientifiques et médicales Elsevier SAS MSC: 35A35; 65L20; 76PO5 RÉSUMÉ. – Nous considérons une discrétisation explicite en temps et espace de l’équation de Boltzmann. Nous exhibons des bornes au moyen de Maxwelliennes et en déduisons la convergence en utilisant un nouveau lemme de moyennisation discret en temps. 2003 Éditions scientifiques et médicales Elsevier SAS
منابع مشابه
The new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملThe new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
متن کاملA Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation
Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...
متن کاملBuoyancy Term Evolution in the Multi Relaxation Time Model of Lattice Boltzmann Method with Variable Thermal Conductivity Using a Modified Set of Boundary Conditions
During the last few years, a number of numerical boundary condition schemes have been used to study various aspects of the no-slip wall condition using the lattice Boltzmann method. In this paper, a modified boundary condition method is employed to simulate the no-slip wall condition in the presence of the body force term near the wall. These conditions are based on the idea of the bounce-back ...
متن کاملSelection of Intermodal Conductivity Averaging Scheme for Unsaturated Flow in Homogeneous Media
The nonlinear solvers in numerical solution of water flow in variably saturated soils are prone to convergence difficulties. Many aspects can give rise to such difficulties, like very dry initial conditions, a steep pressure gradient and great variation of hydraulic conductivity occur across the wetting front during the infiltration of water. So, the averaging method applied to compute hydraul...
متن کاملOn new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces
In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.
متن کامل